- 互聯(lián)網(wǎng)大數(shù)據(jù)時(shí)代的商業(yè)模式創(chuàng)新思維
- 大數(shù)據(jù)征管背景下建筑房地產(chǎn)企業(yè)利益最
- 大數(shù)據(jù)背景下如何利用金三管控增值稅發(fā)
- 大數(shù)據(jù)時(shí)代流程管理與高效協(xié)同
- 大數(shù)據(jù)時(shí)代的銷售行為管理—精細(xì)化銷售
- 大數(shù)據(jù)時(shí)代的銷售行為管理-精細(xì)化銷售
- 大數(shù)據(jù)征管背景下建筑房地產(chǎn)企業(yè)營改增
- 互聯(lián)網(wǎng)+之基于大數(shù)據(jù)的經(jīng)營決策
- 互聯(lián)網(wǎng)創(chuàng)新思維與大數(shù)據(jù)應(yīng)用
- 大數(shù)據(jù)市場(chǎng)營銷-如何利用大數(shù)據(jù)為市場(chǎng)
- 電子廠如何提高質(zhì)量管理 電子廠控制質(zhì)
- 員工忠誠度的培養(yǎng)與提高
- 員工質(zhì)量意識(shí)差怎么辦 如何提高員工質(zhì)
- 服裝企業(yè)生產(chǎn)管理干部核心管理技能提高
- 汽車售后服務(wù)體系運(yùn)營管理的改善與提高
- 高級(jí)秘書、助理和行政人員技能提高訓(xùn)練
- 銀行網(wǎng)點(diǎn)主任綜合技能提高
- 如何降低庫存及提高庫存周轉(zhuǎn)率
- 大數(shù)據(jù)時(shí)代的市場(chǎng)營銷
- 高級(jí)秘書、助理和行政人員技能提高訓(xùn)練
大數(shù)據(jù)挖掘工具:SPSS Modeler入門與提高
課程編號(hào):32166
課程價(jià)格:¥26000/天
課程時(shí)長:3 天
課程人氣:304
- 課程說明
- 講師介紹
- 選擇同類課
市場(chǎng)部、業(yè)務(wù)支撐部、數(shù)據(jù)分析部、運(yùn)營分析部等對(duì)業(yè)務(wù)數(shù)據(jù)分析有較高要求的相關(guān)人員。
【培訓(xùn)收益】
第一部分:數(shù)據(jù)挖掘標(biāo)準(zhǔn)流程
1、數(shù)據(jù)挖掘概述
2、數(shù)據(jù)挖掘的標(biāo)準(zhǔn)流程(CRISP-DM)
商業(yè)理解
數(shù)據(jù)準(zhǔn)備
數(shù)據(jù)理解
模型建立
模型評(píng)估
模型應(yīng)用
案例:客戶流失預(yù)測(cè)及客戶挽留
3、數(shù)據(jù)集的基本知識(shí)
a)存儲(chǔ)類型
b)統(tǒng)計(jì)類型
c)角度
4、SPSS工具簡介
第二部分:數(shù)據(jù)預(yù)處理過程
1、數(shù)據(jù)預(yù)處理的基本步驟
數(shù)據(jù)讀取、數(shù)據(jù)理解、數(shù)據(jù)處理、變量處理、探索分析
2、數(shù)據(jù)預(yù)處理的主要任務(wù)
數(shù)據(jù)集成:多個(gè)數(shù)據(jù)集的合并
數(shù)據(jù)清理:異常值的處理
數(shù)據(jù)處理:數(shù)據(jù)篩選、數(shù)據(jù)精簡、數(shù)據(jù)平衡
變量處理:變量變換、變量派生、變量精簡
數(shù)據(jù)歸約:實(shí)現(xiàn)降維,避免維災(zāi)難
3、數(shù)據(jù)集成
外部數(shù)據(jù)讀入:Txt/Excel/SPSS/Database
數(shù)據(jù)追加(添加數(shù)據(jù))
變量合并(添加變量)
4、數(shù)據(jù)理解(異常數(shù)據(jù)處理)
取值范圍限定
重復(fù)值處理
無效值/錯(cuò)誤值處理
缺失值處理
離群值/極端值處理
數(shù)據(jù)質(zhì)量評(píng)估
5、數(shù)據(jù)準(zhǔn)備:數(shù)據(jù)處理
數(shù)據(jù)篩選:數(shù)據(jù)抽樣/選擇(減少樣本數(shù)量)
數(shù)據(jù)精簡:數(shù)據(jù)分段/離散化(減少變量的取值個(gè)數(shù))
數(shù)據(jù)平衡:正反樣本比例均衡
6、數(shù)據(jù)準(zhǔn)備:變量處理
變量變換:原變量取值更新,比如標(biāo)準(zhǔn)化
變量派生:根據(jù)舊變量生成新的變量
變量精簡:降維,減少變量個(gè)數(shù)
7、數(shù)據(jù)降維
常用降維方法
如何確定變量個(gè)數(shù)
特征選擇:選擇重要變量,剔除不重要的變量
從變量本身考慮
從輸入變量與目標(biāo)變量的相關(guān)性考慮
對(duì)輸入變量進(jìn)行合并
因子分析(主成分分析)
因子分析的原理
因子個(gè)數(shù)如何選擇
如何解讀因子含義
案例:提取影響電信客戶流失的主成分分析
8、數(shù)據(jù)探索性分析
常用統(tǒng)計(jì)指標(biāo)分析
單變量:數(shù)值變量/分類變量
雙變量:交叉分析/相關(guān)性分析
多變量:特征選擇、因子分析
演練:描述性分析(頻數(shù)、描述、探索、分類匯總)
第三部分:數(shù)據(jù)可視化篇
1、數(shù)據(jù)可視化的原則
2、常用可視化工具
3、常用可視化圖形
柱狀圖、條形圖、餅圖、折線圖、箱圖、散點(diǎn)圖等
4、圖形的表達(dá)及適用場(chǎng)景
演練:各種圖形繪制
第四部分:影響因素分析篇
問題:如何判斷一個(gè)因素對(duì)另一個(gè)因素有影響?比如營銷費(fèi)用是否會(huì)影響銷售額?產(chǎn)品價(jià)格是否會(huì)影響銷量?產(chǎn)品的陳列位置是否會(huì)影響銷量?
風(fēng)險(xiǎn)控制的關(guān)鍵因素有哪些?如何判斷?
1、影響因素分析的常見方法
2、相關(guān)分析(衡量變量間的的相關(guān)性)
問題:這兩個(gè)屬性是否會(huì)相互影響?影響程度大嗎?營銷費(fèi)用會(huì)影響銷售額嗎?
什么是相關(guān)關(guān)系
相關(guān)系數(shù):衡量相關(guān)程度的指標(biāo)
相關(guān)系數(shù)的三個(gè)計(jì)算公式
相關(guān)分析的假設(shè)檢驗(yàn)
相關(guān)分析的基本步驟
相關(guān)分析應(yīng)用場(chǎng)景
演練:體重與腰圍的關(guān)系
演練:營銷費(fèi)用會(huì)影響銷售額嗎
演練:哪些因素與汽車銷量有相關(guān)性
演練:通信費(fèi)用與開通月數(shù)的相關(guān)分析
案例:酒樓生意好壞與報(bào)紙銷量的相關(guān)分析
3、方差分析
問題:哪些才是影響銷量的關(guān)鍵因素?
方差分析解決什么問題
方差分析種類:單因素/雙因素可重復(fù)/雙因素?zé)o重復(fù)
方差分析的應(yīng)用場(chǎng)景
方差分析的原理與步驟
如何解決方差分析結(jié)果
演練:終端擺放位置與終端銷量有關(guān)嗎?
演練:開通月數(shù)驛客戶流失的影響分析
演練:客戶學(xué)歷對(duì)消費(fèi)水平的影響分析
演練:廣告和價(jià)格是影響終端銷量的關(guān)鍵因素嗎
演練:營業(yè)員的性別、技能級(jí)別產(chǎn)品銷量有影響嗎?
案例:2015年大學(xué)生工資與父母職業(yè)的關(guān)系
案例:醫(yī)生洗手與嬰兒存活率的關(guān)系
演練:尋找影響產(chǎn)品銷量的關(guān)鍵因素
4、列聯(lián)分析(兩類別變量的相關(guān)性分析)
交叉表與列聯(lián)表
卡方檢驗(yàn)的原理
卡方檢驗(yàn)的幾個(gè)計(jì)算公式
列聯(lián)表分析的適用場(chǎng)景
案例:套餐類型對(duì)客戶流失的影響分析
案例:學(xué)歷對(duì)業(yè)務(wù)套餐偏好的影響分析
案例:行業(yè)/規(guī)模對(duì)風(fēng)控的影響分析
第五部分:數(shù)據(jù)建模過程篇
1、預(yù)測(cè)建模六步法
選擇模型:基于業(yè)務(wù)選擇恰當(dāng)?shù)臄?shù)據(jù)模型
屬性篩選:選擇對(duì)目標(biāo)變量有顯著影響的屬性來建模
訓(xùn)練模型:采用合適的算法對(duì)模型進(jìn)行訓(xùn)練,尋找到最合適的模型參數(shù)
評(píng)估模型:進(jìn)行評(píng)估模型的質(zhì)量,判斷模型是否可用
優(yōu)化模型:如果評(píng)估結(jié)果不理想,則需要對(duì)模型進(jìn)行優(yōu)化
應(yīng)用模型:如果評(píng)估結(jié)果滿足要求,則可應(yīng)用模型于業(yè)務(wù)場(chǎng)景
2、數(shù)據(jù)挖掘常用的模型
數(shù)值預(yù)測(cè)模型:回歸預(yù)測(cè)、時(shí)序預(yù)測(cè)等
分類預(yù)測(cè)模型:邏輯回歸、決策樹、神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等
市場(chǎng)細(xì)分:聚類、RFM、PCA等
產(chǎn)品推薦:關(guān)聯(lián)分析、協(xié)同過濾等
產(chǎn)品優(yōu)化:回歸、隨機(jī)效用等
產(chǎn)品定價(jià):定價(jià)策略/最優(yōu)定價(jià)等
3、屬性篩選/特征選擇/變量降維
基于變量本身特征
基于相關(guān)性判斷
因子合并(PCA等)
IV值篩選(評(píng)分卡使用)
基于信息增益判斷(決策樹使用)
4、模型評(píng)估
模型質(zhì)量評(píng)估指標(biāo):R^2、正確率/查全率/查準(zhǔn)率/特異性等
預(yù)測(cè)值評(píng)估指標(biāo):MAD、MSE/RMSE、MAPE、概率等
模型評(píng)估方法:留出法、K拆交叉驗(yàn)證、自助法等
其它評(píng)估:過擬合評(píng)估
5、模型優(yōu)化
優(yōu)化模型:選擇新模型/修改模型
優(yōu)化數(shù)據(jù):新增顯著自變量
優(yōu)化公式:采用新的計(jì)算公式
6、模型實(shí)現(xiàn)算法(暫略)
7、好模型是優(yōu)化出來的
案例:通信客戶流失分析及預(yù)警模型
第六部分:數(shù)值預(yù)測(cè)模型篇
問題:如何預(yù)測(cè)產(chǎn)品的銷量/銷售金額?如果產(chǎn)品跟隨季節(jié)性變動(dòng),該如何預(yù)測(cè)?新產(chǎn)品上市,如果評(píng)估銷量上限及銷售增速?
1、銷量預(yù)測(cè)與市場(chǎng)預(yù)測(cè)——讓你看得更遠(yuǎn)
2、回歸預(yù)測(cè)/回歸分析
問題:如何預(yù)測(cè)未來的銷售量(定量分析)?
回歸分析的基本原理和應(yīng)用場(chǎng)景
回歸分析的種類(一元/多元、線性/曲線)
得到回歸方程的幾種常用方法
回歸分析的五個(gè)步驟與結(jié)果解讀
回歸預(yù)測(cè)結(jié)果評(píng)估(如何評(píng)估預(yù)測(cè)質(zhì)量,如何選擇最佳回歸模型)
演練:散點(diǎn)圖找推廣費(fèi)用與銷售額的關(guān)系(一元線性回歸)
演練:推廣費(fèi)用、辦公費(fèi)用與銷售額的關(guān)系(多元線性回歸)
演練:讓你的營銷費(fèi)用預(yù)算更準(zhǔn)確
演練:如何選擇最佳的回歸預(yù)測(cè)模型(曲線回歸)
帶分類變量的回歸預(yù)測(cè)
演練:汽車季度銷量預(yù)測(cè)
演練:工齡、性別與終端銷量的關(guān)系
演練:如何評(píng)估銷售目標(biāo)與資源配置(營業(yè)廳)
3、時(shí)序預(yù)測(cè)
問題:隨著時(shí)間變化,未來的銷量變化趨勢(shì)如何?
時(shí)序分析的應(yīng)用場(chǎng)景(基于時(shí)間的變化規(guī)律)
移動(dòng)平均MA的預(yù)測(cè)原理
指數(shù)平滑ES的預(yù)測(cè)原理
自回歸移動(dòng)平均ARIMA模型
如何評(píng)估預(yù)測(cè)值的準(zhǔn)確性?
案例:銷售額的時(shí)序預(yù)測(cè)及評(píng)估
演練:汽車銷量預(yù)測(cè)及評(píng)估
演練:電視機(jī)銷量預(yù)測(cè)分析
演練:上海證券交易所綜合指數(shù)收益率序列分析
演練:服裝銷售數(shù)據(jù)季節(jié)性趨勢(shì)預(yù)測(cè)分析
4、自定義模型(如何利用規(guī)劃求解進(jìn)行自定義模型)
案例:如何對(duì)餐廳客流量進(jìn)行建模及模型優(yōu)化
第七部分:分類預(yù)測(cè)模型篇
問題:如何評(píng)估客戶購買產(chǎn)品的可能性?如何預(yù)測(cè)客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準(zhǔn)推薦產(chǎn)品或業(yè)務(wù)?
1、分類模型概述
2、常見分類預(yù)測(cè)模型
3、評(píng)估分類模型的常用指標(biāo)
正確率、查全率/查準(zhǔn)率、特異性等
4、邏輯回歸模型(LR)
邏輯回歸模型原理及適用場(chǎng)景
邏輯回歸種類:二項(xiàng)/多項(xiàng)邏輯回歸
如何解讀邏輯回歸方程
案例:如何評(píng)估用戶是否會(huì)購買某產(chǎn)品(二項(xiàng)邏輯回歸)
消費(fèi)者品牌選擇模型分析
案例:多品牌選擇模型分析(多項(xiàng)邏輯回歸)
5、分類決策樹(DT)
問題:如何預(yù)測(cè)客戶行為?如何識(shí)別潛在客戶?
風(fēng)控:如何識(shí)別欠貸者的特征,以及預(yù)測(cè)欠貸概率?
客戶保有:如何識(shí)別流失客戶特征,以及預(yù)測(cè)客戶流失概率?
決策樹分類簡介
如何評(píng)估分類性能?
案例:美國零售商(Target)如何預(yù)測(cè)少女懷孕
演練:識(shí)別銀行欠貨風(fēng)險(xiǎn),提取欠貸者的特征
構(gòu)建決策樹的三個(gè)關(guān)鍵問題
如何選擇最佳屬性來構(gòu)建節(jié)點(diǎn)
如何分裂變量
修剪決策樹
選擇最優(yōu)屬性
熵、基尼索引、分類錯(cuò)誤
屬性劃分增益
如何分裂變量
多元?jiǎng)澐峙c二元?jiǎng)澐?br />
連續(xù)變量離散化(最優(yōu)劃分點(diǎn))
修剪決策樹
剪枝原則
預(yù)剪枝與后剪枝
構(gòu)建決策樹的四個(gè)算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優(yōu)分類模型?
案例:商場(chǎng)酸奶購買用戶特征提取
案例:電信運(yùn)營商客戶流失預(yù)警與客戶挽留
案例:識(shí)別拖欠銀行貨款者的特征,避免不良貨款
案例:識(shí)別電信詐騙者嘴臉,讓通信更安全
6、人工神經(jīng)網(wǎng)絡(luò)(ANN)
神經(jīng)網(wǎng)絡(luò)概述
神經(jīng)網(wǎng)絡(luò)基本原理
神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)
神經(jīng)網(wǎng)絡(luò)的建立步驟
神經(jīng)網(wǎng)絡(luò)的關(guān)鍵問題
BP反向傳播網(wǎng)絡(luò)(MLP)
徑向基網(wǎng)絡(luò)(RBF)
案例:評(píng)估銀行用戶拖欠貨款的概率
7、判別分析(DA)
判別分析原理
距離判別法
典型判別法
貝葉斯判別法
案例:MBA學(xué)生錄取判別分析
案例:上市公司類別評(píng)估
8、K近鄰分類(KNN)
基本原理
關(guān)鍵問題
9、貝葉斯分類(NBN)
貝葉斯分類原理
計(jì)算類別屬性的條件概率
估計(jì)連續(xù)屬性的條件概率
貝葉斯網(wǎng)絡(luò)種類:TAN/馬爾科夫毯
預(yù)測(cè)分類概率(計(jì)算概率)
案例:評(píng)估銀行用戶拖欠貨款的概率
10、支持向量機(jī)(SVM)
SVM基本原理
線性可分問題:最大邊界超平面
線性不可分問題:特征空間的轉(zhuǎn)換
維空難與核函數(shù)
第八部分:市場(chǎng)細(xì)分模型篇
問題:我們的客戶有幾類?各類特征是什么?如何實(shí)現(xiàn)客戶細(xì)分,開發(fā)符合細(xì)分市場(chǎng)的新產(chǎn)品?如何提取客戶特征,從而對(duì)產(chǎn)品進(jìn)行市場(chǎng)定位?
1、市場(chǎng)細(xì)分的常用方法
有指導(dǎo)細(xì)分
無指導(dǎo)細(xì)分
2、聚類分析
如何更好的了解客戶群體和市場(chǎng)細(xì)分?
如何識(shí)別客戶群體特征?
如何確定客戶要分成多少適當(dāng)?shù)念悇e?
聚類方法原理介紹
聚類方法作用及其適用場(chǎng)景
聚類分析的種類
K均值聚類(快速聚類)
案例:移動(dòng)三大品牌細(xì)分市場(chǎng)合適嗎?
演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?
演練:如何評(píng)選優(yōu)秀員工?
演練:中國各省份發(fā)達(dá)程度分析,讓數(shù)據(jù)自動(dòng)聚類
層次聚類(系統(tǒng)聚類):發(fā)現(xiàn)多個(gè)類別
R型聚類與Q型聚類的區(qū)別
案例:中移動(dòng)如何實(shí)現(xiàn)客戶細(xì)分及營銷策略
演練:中國省市經(jīng)濟(jì)發(fā)展情況分析(Q型聚類)
演練:裁判評(píng)分的標(biāo)準(zhǔn)衡量,避免“黑哨”(R型聚類)
兩步聚類
3、主成分分析PCA分析
主成分分析原理
主成分分析基本步驟
主成分分析結(jié)果解讀
演練:PCA探索汽車購買者的細(xì)分市場(chǎng)
4、RFM模型客戶細(xì)分框架
第九部分:客戶價(jià)值評(píng)估
1、客戶價(jià)值評(píng)估與RFM模型
問題:如何評(píng)估客戶的價(jià)值?如何針對(duì)不同客戶采取不同的營銷策略?
RFM模型,更深入了解你的客戶價(jià)值
RFM的客戶細(xì)分框架理解
RFM模型與市場(chǎng)策略
RFM模型與活躍度
演練:“雙11”淘寶商家如何選擇客戶進(jìn)行促銷
演練:結(jié)合響應(yīng)模型,宜家IKE實(shí)現(xiàn)最大化營銷利潤
演練:重購用戶特征分析
第十部分:實(shí)戰(zhàn)-數(shù)據(jù)挖掘項(xiàng)目
實(shí)戰(zhàn)1:客戶流失預(yù)警與客戶挽留之真實(shí)數(shù)據(jù)分析實(shí)踐
實(shí)戰(zhàn)2:銀行信用風(fēng)險(xiǎn)分析
結(jié)束:課程總結(jié)與問題答疑。
-
大數(shù)據(jù)及人工智能背景下消費(fèi)和小微信貸線上獲客、產(chǎn)品設(shè)計(jì)、風(fēng)控應(yīng)對(duì)策略
第一部分:金融科技發(fā)展?fàn)顩r的介紹一、金融科技的現(xiàn)狀與發(fā)展趨勢(shì)(一)宏觀背景1、金融科技(支付寶人臉識(shí)別技術(shù)、APPLEPAY、虹膜技術(shù)、二維碼支付技術(shù))2、利率市場(chǎng)化3、金融脫媒(二)移動(dòng)互聯(lián)技術(shù)的發(fā)展使互聯(lián)網(wǎng)金融成為可能1、移動(dòng)互聯(lián)網(wǎng)技術(shù)2、移動(dòng)支付技術(shù)3、H5、APP(三)互聯(lián)網(wǎng)金融對(duì)傳統(tǒng)銀行資產(chǎn)業(yè)務(wù)的顛覆和沖..
-
大數(shù)據(jù)時(shí)代——提升患者管理,構(gòu)建專業(yè)藥房
【課程導(dǎo)言】:移動(dòng)互聯(lián)時(shí)代下,實(shí)體門店面臨巨大的挑戰(zhàn),同時(shí)也是一種機(jī)會(huì)。馬云說:不是實(shí)體門店不行了,而是你的實(shí)體門店不行了。面臨新的沖擊實(shí)體店如何進(jìn)行創(chuàng)新,如何守住老陣地,如何利用新武器,這是所有實(shí)體連鎖共同面臨的問題。課程從互聯(lián)網(wǎng)環(huán)境對(duì)我們的實(shí)體店挑戰(zhàn)和我們面臨的消費(fèi)者消費(fèi)習(xí)慣和方式的的變化入手,通過分析新零售良品鋪?zhàn)?,海瀾之家,名?chuàng)優(yōu)品的..
-
電商互聯(lián)網(wǎng)大數(shù)據(jù)營銷之落地實(shí)踐鐵律
課程背景:未來人貨場(chǎng)一切數(shù)字化,數(shù)據(jù)將成為一種資源,沒有數(shù)據(jù)沒有未來,企業(yè)如何構(gòu)建自己的大數(shù)據(jù)未來?人工智能已經(jīng)來臨,人工智能在營銷板塊的應(yīng)用本質(zhì)就是大數(shù)據(jù)營銷!企業(yè)的ERP、CRM、報(bào)表等等僅僅是零散的死數(shù)據(jù),如何激活流動(dòng)產(chǎn)生閉環(huán),產(chǎn)生效益?經(jīng)驗(yàn)將成為負(fù)債,未來將利用數(shù)據(jù)產(chǎn)品規(guī)劃、定位、策劃、人群分析、活動(dòng)策劃,數(shù)據(jù)成為商業(yè)的起點(diǎn)!人為..
-
電商互聯(lián)網(wǎng)智能商業(yè):大數(shù)據(jù)營銷分析與落地實(shí)踐
課程背景:數(shù)據(jù)是未來企業(yè)唯一資源,大數(shù)據(jù)營銷意味著高效、精準(zhǔn)、成本低、全自動(dòng)化,讓企業(yè)從人海戰(zhàn)、廣告戰(zhàn)、渠道戰(zhàn)的泥潭中拔出來為什么搜索廣告效果差了?為什么團(tuán)購效果也差了?為什么傳統(tǒng)的用戶細(xì)分、STP在大數(shù)據(jù)提出的用戶畫像面前蒼白了?為什么獨(dú)角獸全靠增長黑客模式崛起?企業(yè)未來如何搭建科學(xué)的大數(shù)據(jù)營銷隊(duì)伍,建立科學(xué)的數(shù)字營銷體!通過互動(dòng)獲取數(shù)據(jù),..
-
大數(shù)據(jù)基礎(chǔ)原理與應(yīng)用
一、運(yùn)營商網(wǎng)絡(luò)架構(gòu)和技術(shù)選擇1.運(yùn)營商網(wǎng)絡(luò)架構(gòu)2.運(yùn)營商業(yè)務(wù)類型3.接入網(wǎng)技術(shù)選擇4.不同業(yè)務(wù)的技術(shù)實(shí)現(xiàn)二、全業(yè)務(wù)運(yùn)營技術(shù)實(shí)現(xiàn)1.集團(tuán)業(yè)務(wù)分類及特點(diǎn)2.集團(tuán)高等級(jí)業(yè)務(wù)特點(diǎn)及業(yè)務(wù)場(chǎng)景3.集團(tuán)低等級(jí)業(yè)務(wù)特點(diǎn)及業(yè)務(wù)場(chǎng)景4.集團(tuán)高、低等級(jí)業(yè)務(wù)要求及技術(shù)選擇5.數(shù)據(jù)專線業(yè)務(wù)及技術(shù)實(shí)現(xiàn)6.互聯(lián)網(wǎng)專線業(yè)務(wù)及技術(shù)實(shí)現(xiàn)7.集..
-
大數(shù)據(jù)、物聯(lián)網(wǎng)、云計(jì)算行業(yè)應(yīng)用及發(fā)展趨勢(shì)
一、信息通信產(chǎn)業(yè)發(fā)展的背景和趨勢(shì)1、信息通信產(chǎn)業(yè)用戶現(xiàn)狀和發(fā)展趨勢(shì)2、國內(nèi)外信息化發(fā)展戰(zhàn)略3、中國信息化發(fā)展現(xiàn)狀和趨勢(shì)4、信息通信網(wǎng)絡(luò)發(fā)展趨勢(shì)5、電信業(yè)轉(zhuǎn)型新趨勢(shì)二、ICT前沿技術(shù)(一)云計(jì)算1、云計(jì)算發(fā)展的商業(yè)動(dòng)力與技術(shù)趨勢(shì)1.1云計(jì)算基本概念1.2云計(jì)算的商業(yè)動(dòng)力:企業(yè)ICT轉(zhuǎn)型1.3云計(jì)算特點(diǎn)..